• Корзина товаров:

  • 0 шт. - 0 руб.

Товары в корзине

Интернет-магазин "Гарбузов Г.А."
Сочи – 354002, Курортный пр.74/1 кв. 26
Тел. 8 862 271 02 37 vitauct@yandex.ru
 

Особенность функционирования эндоплазматического ретикулума у раковых клеток и прохождения в них энергетических процессов.

Дегидроаскорбиновая кислота (Д-АК) активно импортируется в эндоплазматический ретикулум (ЭПР)  (эндоплазматическую сеть, состоящую из мембран и задающую направленность и активный транспорт субстратов против градиентов) клеток с помощью транспортеров глюкозы. Следует отметить, что энергетические процессы в онкоклетках переносятся из митохондрий именно в эндоплазматический ретикулум и она становится площадкой для энергопроцессов в онкоклетке. Именно здесь в ЭПР и накапливается Д-АК, а значит здесь открывается фронт ее военных действий. Именно здесь среда онкоклетки существенно отличается от обычных клеток, она просто здесь перевосстановлена, и здесь Д-АК очевидно вынуждена восстановиться до АК. И с этого момента начинается убойное действие АК на онкоклетку. Онкоклетка агрессивно может накапливать в себе Д-АК, так как воспринимает её на своих мембранных транспортерах за глюкозу. Количество глюкозо-потребляющих рецепторов на онкоклетке многократно раз больше, чем у здоровых. Транспортные системы поставки глюкозы и Д-АК в клетку общие. Это и явится для онкоклеток троянским конем. Её просто можно обмануть. Остается только правильно сконцентрировать военные действия, решить проблему подачи мегадоз Д-АК и тогда феномен гибели онкоклеток от АК будет многократно усилен. Как видим из изложенного выше, существует две концепции механизма гибели онкоклеток: одна предполагает значимость Д-АК, а другая – АК. Но если отвлечься от механизма действия, то важно, что в обоих случаях происходит явная гибель онкоклеток. Задача остается в том, что бы как можно больше усилить этот механизм и повысить эффективность лечения. Эффект от Д-АК есть, но как видим он очень размытый, не четко просматриваемый. Не удивительно, что этот эффект от Д-АК такой ослабленный, ведь на его пути столько помех. База проявления процесса некроза онкоклеток очень слабая, тонкая и он балансирует неустойчиво как на лезвии бритвы: малейшие перекосы в других обменных процессах могут легко перевести его в обратную сторону и эффект быстро теряется. Тем не менее, доказано, что такой эффект возможен, а самое главное что он безвреден, без побочек. Остается убрать все помехи на его пути и баланс сил перейдет в пользу очевидного проявления лечебного действия Д-АК. Именно для этого нами и предложен метод «Избирательного голодания» в комплексе с другими кислотами. Уверен, что это правильное направление и поведет онкоклетоки к их гибели. Результаты станут не статистически возможными, а дадут надежный плановый результат.
Значение ретикулума для работы митохондрий. Очевидно градиент в эндоплазматическом ретикулуме при онкологии не достаточный, чтобы протянуть достаточно заряженный субстрат до митохондрий и подать ей стартерный сигнал для зажигания. Стартерный заряд электронов на митохондриях затухает и они начинают глохнуть. Повышают этот градиент работающие митохондрии, которые как пылесос натягивают в себя нужные заряды из протонов, вернее ионы с плюсовыми зарядами, тем самым задавая противоположный заряд на ретикулуме. Митохондрии как бы динамомашины, энергизатор всех клеточных структур, благодаря им все внутри сильно заряжено. А управляют их активностью система регулирующих операторных структур на внешней стороне мембраны клеток – так называемый «сенсорный дисплей». На нем имеются так же электрофильные белки, которые как конденсаторы конденсируют на себе еще более сильные заряды, чем он вокруг. Они определяют разницу потенциалов в межклеточной среде клеток и на стенках ретикулума. Ретикулум – это электрический контур, где очевидно по одной стороне мембраны скапливаются одни заряды, а по противоположной - другие. Таким образом, через ту или иную сторону ретикулума сигналы могут подаваться как внутрь клетки к митохондриям, так и от них наружу клетки. Следовательно ретикулум это электрическая сеть заряженная как плюсовыми, так и минусовыми зарядами. Ретикулум это и электротранспортер. Баланс зарядов с двух сторон ретикулума строго контролируется как активностью митохондрий, так и энергетическими операторными структурами на внешней стороне клетки – на цилиях. Эти белки при определенных ситуациях в окружающей среде клетки разряжаясь, могут давать активный сигнал на ретикулум и митохондрии. При этом меняется баланс существующих зарядов на одной из сторон ретикулума. Это ведет к сдвигу в химических процессах, запускаются многие новые реакции. Одна сторона мембраны ретикулума подключена к одному типу входа в митохондрии, а противоположная – к выходу из нее. Создается единая электрическая цепь. Создается цепь двойного активного управления энергетикой митохондрий.
Напряженность, тонус на ретикулуме держит под контролем статус работы митохондрий. Сами митохондрии через одни отверстия затягивают заряды скопившиеся на одной стороне мембраны ретикулума, но в тоже время митохондрии выводят противоположные заряды на другую сторону мембран ретикулума. Заряды таким образом не смешиваются и разобщены. Это важно, чтобы удерживать все в ионном виде. Внешне ретикулум даже похож на обкладки конденсатора, чем больше слоев обкладок, тем больше его электроемкость. Между прокладками находится диэлектрик. Через микроскоп можно увидеть мощную густую сеть обкладок.
Напомню как образуется заряд конденсатора. В момент подключения к источнику питания оказывается больше всего места на электродах, поэтому и ток зарядки будет максимальным, но по мере накопления заряда, ток уменьшаться и пропадет полностью после полного заряда. При зарядке на одной пластине будут собираться отрицательно заряженные частицы – электроны, а на другой – ионы, положительно заряженные частицы. Разрядка конденсатора заключается в следующем: если после окончания зарядки отключить источник питания и подключить нагрузку R, то он сам превратится в источник тока. Любые колебания ОВП на внешней стороне мембраны клеток сказывается и на состоянии ретикулума, когда он может сбрасывать заряд на митохондрии, управляя их активностью. Митохондрии в свою очередь настроены так, что никогда не позволяют снизиться зарядам на ретикулуме ниже критического уровня. В онкологических клетках заряды внутри митохондрий резко падают и вся система регулировки нарушается. Это стержень управления всей электрохимической энергетики клетки. Химические процессы всегда вторичны и ведомы ими. Поэтому неверно трактовать все процессы внутри клетки на уровне химических процессов.
Итак, в ретикулуме имеется круговорот веществ, где насосом являются митохондрии. При недостатке этого круговорота между ретикулом и митохондриями идет подсос электроосмосом веществ извне через наружную мембрану и открытия на ней шлюзов и натриевой помпы. Среда здесь на мембранах ретикулума и жидком субстрате перевосстановлена, избыток минусовых зарядов. Это и определяет химическое равновесие по рН сопряженных буферных химических электропарных веществ, когда буферная система то разряжается, то восстанавливается. Регулируют, конечно, все не химические процессы и катализаторы, а именно заряды. Химические процессы – просто исполнители, посредники. Наружная сторона митохондрий обеспечивает напряжение зависимого анионного канала. Этот механизм поддерживания напряжения называется VDAC.  И именно она задает условия работе ретикулума. Именно здесь на наружной стороне мембраны находится фермент Гексокиназа ΙΙ, обеспечивающая утилизацию глюкозы. Разделение, рассоединение работы наружной митохондриальной мембраны (VDAC) и Гексокиназа ΙΙ обеспечивает индукцию апоптоза.
Митохондрия работает путем затягивания из ретикулума в себя наподобие электромагнитного насоса необходимое под большим напряжением. Без этого высочайшего напряжения эффекта затягивания внутрь её не будет. Но начинается сопряжение работы мембранных систем митохондрии и ретикулума не в самой клетке, а и в соподчиненной им и регулирующей их работу операторной системы на внешней стороне мембраны клеток. Здесь в этот единый клубок саморегулировки включены так называемые цилии и конформационные белки. Вся эта система работает как единый замкнутый контур. В этой единой системе саморегулировки чаще всего страдают цилии. У онкоклеток в отличие от нормальных нет цилий! Целый этаж настройки энергетики клетки отсутствует.
Запустить эту поломку на цилиях могут например хронические провоспалительные процессы – «низовые пожары», уничтожающие систему структурных белков регулировки энергетики клетки специфичной для дифференцированных клеток.
Надежды на разработку методов репарации онкоклеток с восстановлением в них операторных структур не оправдывают себя. Это связано с тем что методы направленные на репарацию, самовосстановление одновременно здесь включают и механизмы «росткового эффекта» на онкоклетках. Обойти этот ростковый эффект и задать механизм репарации пока недостижимо. Единственно правильный путь это найти слабое место онкоклеток и за счет этого их уничтожать.
Митохондрии задают степень заряженности ионным помпам на внешней мембране клетки и стартерным структурам, удерживающим заряды на ретикулуме. Эти сенсорные структуры наиболее чутки к повреждениям и быстрее всего выгорают. Это отражается на напряженности работы ретикулума, вследствие чего он не обеспечивает протягивание до митохондрий. Митохондрия может даже и протягивает в себя глюкозу и кислород, но работает в холостую, не обеспечивая аэробный процесс энергетики. Напряжение здесь на мембранах митохондрии резко уменьшено и нет эффекта «зажигания». Вся энергетика застревает и растекается на огромной поверхности мембран ретикулума, что не позволяет создать мощное напряжение, тем не менее создавая большой «рассеянный ток».
 
 В случае отключения митохондрий градиент протягивания резко уменьшается. Митохондрии это наиболее эффективные электро-химические топки. Только в их условиях возможно достичь полного аэробного процесса энергетики. Если до митохондрий нет протягивания субстрата, то он начинает срабатывать на уровне эндоплазматического ретикулума, который по своей природе не может раскачать высокоэффективную кислородную энергетику. Энергетика клетки падает до примитивной гликолизной энергетики. Возможности этой топки на много меньше, огонь энергетики здесь идет не как в доменной печи, а как на дровяной примитивной печи, причем по всей площади ретикулума, то есть размазано, как бы низовой, тлеющий огонь, но по гораздо большей площади, что позволяет сжигать много глюкозы или других субстратов типа кетонов. Высокой степени сгорания здесь нет и огромный выхлоп продуктов полураспада. Онкоклетка берет не качеством (сконцентрировано все на малой площади митохондрий при высоких электропотенциалах), а количеством площади окисления-сгорания на стенках сети ретикулума. Поэтому кислород такой клетке особо не нужен, но зато резко возрастает употребление глюкозы.
 Особенность электрозарядов внутри ядра онкоклетки. Мембраны ретикулума и ядра клетки одни и те же. Причем ретикулум как конденсатор законтурен на ядро только одной свой стороной-электродом и сбрасывает электроны в ядро. Итак, заряд ретикулума обеспечивает и заряд внутри ядра клетки. Причем, очевидно, ядро клетки насыщено электрофильными белками, которые обеспечивают концентрацию сверхмощного электростатического заряда внутри ядра. Заряд у онкологических клеток при ослаблении напряженности на ретикулуме также резко подает, напряжение в ядре клетки тоже и теряется  электростатический заряд, который поддерживает хромосомы в подвешенном плавающем состоянии по центру как в магнитном поле и удерживает необходимое для них скручивание и натяжение. Без этого заряда натяжение падает, хромосомы расходятся к периферии ядра, растягиваются и в определенных условиях на слабых местах перекруток могут легко рваться. Механизмы репарации хроматина здесь не срабатывают из-за недостатка электростатики. Этот так называемый устойчивый эффект разрыва хромосом правильнее обозначить хромосомной аберрацией, а не генетической мутацией.
Особенности электрозарядов на эндоплазматическом ретикулуме здоровых и онкоклеток. У здоровых клеток Д-АК поступая в ЭПР не будет восстанавливаться до АК, так как рН и ОВП (окислительно-восстановительный потенциал) здесь ей для этого не подходят, а Д-АК для них будет практически безвредна и трансформироваться на глюкозном конвейере. По другому сценарию будут развиваться события в онкоклетках. Среда здесь перевосстановлена. Здесь восстановленная АК будет вести себя как диверсант в чужом доме, который старается по максимуму все сжечь и уничтожить. Военные действия уже идут не по внешней линии фронта, а глубоко в тылу врага, с употреблением огнеметов, которым и является перекисное окисление липидов (ПОЛ). Если реакция распространения начнет протекать бесконтрольно, могут произойти существенные разрушения с большими последствиями, к которым относятся токсичные липоперекиси, повреждение клеточных мембран, различных органелл, мутация нуклеиновых кислот, инактивация важных ферментов, разрушение питательных веществ и гибель клеток. Все внутри становится подобным дому выгоревшим дотла. Ясно что гибель клеток пойдет не по пути апоптоза, а откровенного некроза, что не есть лучший вариант развития событий. Очевидно здесь легче будет перенаправить процесс на путь апоптоза путем обогащения субстрата янтарной кислотой.
Очевидно целесообразным здесь будет для уменьшения указанных разрушительных последствий неконтролируемого ПОЛ и прочих опасных реакций с участием АФК на здоровые клетки введение селеносодержаших препаратов. Эта система точно также превращает липоперекиси в спирты.
Почему онкоклетки тяготеют к дегидроаскорбинату? Онкоклетки, в отличие от здоровых клеток, многократно раз более настроены в первую очередь на поглощение глюкозы и при ее отсутствии или недостаточности они легко переключатся с помощью тех же транспортеров на поглощение дегидроаскорбината, что значительно повышает его общую эффективность применения при онкологии. Поэтому можно утверждать, что уменьшение конкуренции между глюкозой в пользу Д-АК увеличит возможности последней многократно. Тогда можно ожидать, что особо целесообразно применять Д-АК на фоне метода «Избирательного Голодания», предлагаемого нами впервые. Внутри клетки она удерживается при помощи редукции обратно в аскорбат, глутатион и другие тиолы. Свободный химический радикал семидегидроаскорбиновая кислота (SDA) также принадлежит к группе окисленных аскорбиновых кислот.
Аскорбинат и Д-аскорбинат – единая балансирующая система. Особенно становится значимым Д-аскорбинат при онкологии с учетом понимания ее как противовеса аскорбату в окислительно-восстановительных реакциях. В онкологических клетках кислородное дыхание в митохондриях ограничено и АК не проявляет свои метаболические функции в цикле Кребса. Поэтому онкоклетки легко могут обходиться без АК. Поступление АК в небольших количествах в онкоклетку ей не помеха. В больших количествах АК вряд ли доходит без разрушения внутрь клетки в эндоплазматический ретикулум. Но здесь может скапливаться Д-АК, особенно при определенных условиях недостатка глюкозы. Учитывая, что внутри онкоклетки повышен щелочной фон и степень восстановленности окружающего субстрата, здесь возможно преобразование Д-АК в АК. Последняя распадаясь может образовывать перекись и Д-АК? А полученная вновь  Д-АК оказывается уже в новых условиях и становится субстратом вместо глюкозы. Чтобы процесс пошел в сторону образования перекиси, а не сразу утилизации вместо глюкозы, в окружающем субстрате должен быть избыток Д-АК, который понизит уровень щелочности и восстановленности субстрата до уровня пригодного для преобразования Д-АК по прямому пути энергетики, без промежуточного образования перекиси. Это и объясняет почему при онкологии рекомендуют принимать мегадозы аскорбинки. Ведь она должна занять место глюкозы.